Sharing the Load

By varying the size of their steps, dynein motor proteins work effectively as teams to carry heavy loads around the cell.

Written byDan Cossins
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TEAM WORK: Dynein motor proteins carrying phagosomes along microtubules are weak individually, but strong when working in teams. As a group, dyneins usually take large steps when hauling cargo (1), but as a focused laser beam pulls the cargo in the opposite direction and load increases, the leading proteins shorten their steps (2). This allows trailing dyneins to catch up, meaning the individual proteins bunch together to better share the strain (3). Against even higher loads, dyneins activate “catch bonds,” attaching themselves to microtubules to ensure they don’t get ripped off the track (4).PRECISION GRAPHICS

The paper
A.K. Rai et al., “Molecular adaptations allow dynein to generate large collective forces inside cells,” Cell, 152:172-82, 2013.

Inside every cell is a busy transit system, with motor proteins carrying cargo back and forth on a network of polymerized protein filaments. The motor proteins traveling along these intracellular highways are essential for almost every cellular process. But while much is known about how single motors generate force, how they operate in teams is not clear.

To find out, Roop Mallik of the Tata Institute of Fundamental Research in Mumbai, India, and colleagues used optical tweezers to measure forces exerted in vivo by dyneins and kinesins, two types of motor proteins. With a focused laser beam, they trapped the cargo being carried—in this case, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH