Sharing the Load

By varying the size of their steps, dynein motor proteins work effectively as teams to carry heavy loads around the cell.

Written byDan Cossins
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

TEAM WORK: Dynein motor proteins carrying phagosomes along microtubules are weak individually, but strong when working in teams. As a group, dyneins usually take large steps when hauling cargo (1), but as a focused laser beam pulls the cargo in the opposite direction and load increases, the leading proteins shorten their steps (2). This allows trailing dyneins to catch up, meaning the individual proteins bunch together to better share the strain (3). Against even higher loads, dyneins activate “catch bonds,” attaching themselves to microtubules to ensure they don’t get ripped off the track (4).PRECISION GRAPHICS

The paper
A.K. Rai et al., “Molecular adaptations allow dynein to generate large collective forces inside cells,” Cell, 152:172-82, 2013.

Inside every cell is a busy transit system, with motor proteins carrying cargo back and forth on a network of polymerized protein filaments. The motor proteins traveling along these intracellular highways are essential for almost every cellular process. But while much is known about how single motors generate force, how they operate in teams is not clear.

To find out, Roop Mallik of the Tata Institute of Fundamental Research in Mumbai, India, and colleagues used optical tweezers to measure forces exerted in vivo by dyneins and kinesins, two types of motor proteins. With a focused laser beam, they trapped the cargo being carried—in this case, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research