Side-Chain Theory, circa 1900

Paul Ehrlich came up with an explanation for cellular interactions based on receptors, earning a Nobel Prize and the title "Father of Modern Immunology"—only to have his theory forgotten.

Written byEdyta Zielinska
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

RELEASE THE RECEPTORS: According to Ehrlich’s side-chain theory —depicted here in a diagram used to illustrate his lecture to the Royal Society of London in 1900—immune cells were dotted with a vast array of receptors (1), each specific to a particular substance (2). When a toxin interacted with the relevant receptor (3), the cell would be activated and would react by producing more receptors, which would then be released into the bloodstream as antibodies to neutralize the toxin (4). The theory earned Ehrlich a Nobel prize, but was later discredited and largely forgotten by immunologists.WELLCOME LIBRARY, LONDONPerhaps as a respite from his struggles with literary subjects at school, during the 1860s or early 1870s a teenage Paul Ehrlich visited the lab of his cousin Karl Weigert, a pathologist at Breslau University in what is now Wroclaw, Poland. Weigert showed Ehrlich how to stain cells with dyes in order to differentiate one type of biological tissue from another—an idea that later inspired the famed German immunologist to dream up the “side-chain theory” of cellular interaction, for which he shared the 1908 Nobel Prize in Physiology or Medicine.

Ehrlich continued to experiment with dyes after he enrolled at Breslau University in 1872. As a student working under the anatomist Wilhelm von Waldeyer, his bench was crowded with dyes, and often “his fingers and occasionally his face were colorfully smudged,” wrote Arthur Silverstein in his 2002 book, Paul Ehrlich’s Receptor Immunology: The Magnificent Obsession. Ehrlich proved his proficiency in developing new dyes by discovering a novel type of immune cell called the mast cell in 1878. Four years later he also helped to improve Robert Koch’s stain for a rod-shaped bacillus that Koch had identified as the causative agent for tuberculosis, now called Mycobacterium tuberculosis.

By that time Ehrlich was convinced that “a definite chemical character of the cell,” as he wrote in his ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs

Products

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control