Side-Chain Theory, circa 1900

Paul Ehrlich came up with an explanation for cellular interactions based on receptors, earning a Nobel Prize and the title "Father of Modern Immunology"—only to have his theory forgotten.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

RELEASE THE RECEPTORS: According to Ehrlich’s side-chain theory —depicted here in a diagram used to illustrate his lecture to the Royal Society of London in 1900—immune cells were dotted with a vast array of receptors (1), each specific to a particular substance (2). When a toxin interacted with the relevant receptor (3), the cell would be activated and would react by producing more receptors, which would then be released into the bloodstream as antibodies to neutralize the toxin (4). The theory earned Ehrlich a Nobel prize, but was later discredited and largely forgotten by immunologists.WELLCOME LIBRARY, LONDONPerhaps as a respite from his struggles with literary subjects at school, during the 1860s or early 1870s a teenage Paul Ehrlich visited the lab of his cousin Karl Weigert, a pathologist at Breslau University in what is now Wroclaw, Poland. Weigert showed Ehrlich how to stain cells with dyes in order to differentiate one type of biological tissue from another—an idea that later inspired the famed German immunologist to dream up the “side-chain theory” of cellular interaction, for which he shared the 1908 Nobel Prize in Physiology or Medicine.

Ehrlich continued to experiment with dyes after he enrolled at Breslau University in 1872. As a student working under the anatomist Wilhelm von Waldeyer, his bench was crowded with dyes, and often “his fingers and occasionally his face were colorfully smudged,” wrote Arthur Silverstein in his 2002 book, Paul Ehrlich’s Receptor Immunology: The Magnificent Obsession. Ehrlich proved his proficiency in developing new dyes by discovering a novel type of immune cell called the mast cell in 1878. Four years later he also helped to improve Robert Koch’s stain for a rod-shaped bacillus that Koch had identified as the causative agent for tuberculosis, now called Mycobacterium tuberculosis.

By that time Ehrlich was convinced that “a definite chemical character of the cell,” as he wrote in his ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Edyta Zielinska

    This person does not yet have a bio.

Published In

Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Atelerix

Atelerix signs exclusive agreement with MineBio to establish distribution channel for non-cryogenic cell preservation solutions in China

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome