Site-specific integration

A phage integrase aids targeted integration of a human Factor IX gene in the mouse genome.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Controlled integration of exogenous DNA within the genome has obvious advantages in gene therapy and could circumvent the dangers associated with random genomic integration. In an Advanced Online Publication in Nature Biotechnology, Eric Olivares and colleagues describe the use of a bacterophage ΦC31 integrase to achieve site-specific integration of therapeutic genes (Nature Biotechnology, doi:10.1038/nbt753, 15 October 2002).

The integrase directs recombination between the phage attP site and the host attB site. Olivares et al. tested whether this system could be exploited to deliver therapeutic human genes such as alpha1-antitrypsin (hAAT) or Factor IX (hFIX). The integrase functioned effectively to augment hAAT and hFIX expression in murine livers. The levels persisted after partial hepatectomy suggesting the hFIX had integrated into the genome in liver cells. They confirmed integration and identified two genomic sequences that resemble the attP site and serve as specific integration sites.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH