Species-Specific

Scientists uncover striking differences between mouse and human gene expression across a variety of tissues.

Written byJyoti Madhusoodanan
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIPEDIA, RAMAMice are widely used to model human metabolism, disease, and drug response. But results published today (November 17) in PNAS reveal widespread differences between human and mouse gene expression, both in protein-coding and noncoding genes, suggesting that understanding these disparities could help explain fundamental differences in the two species’ physiology.

Michael Snyder of Stanford University and his colleagues compared how genes are expressed in 15 different human and mouse tissues, including brain, heart, liver, and kidney. They found that gene expression patterns clustered by species rather than tissues. For example, gene expression in a mouse liver more closely resembled the patterns observed in a mouse heart than those observed in a human liver. Using data from the ENCODE and modENCODE projects, among other sources, the analysis spanned “the most tissue-diverse RNA-seq dataset to date,” the authors wrote in their paper.

The results “go a little against the grain,” said bioinformatician Mark Gerstein of Yale University who was not involved in the study. “We might think that humans and mice are very similar [genetically], but when ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies