Speed-Sensitive Denticles

Tooth-like structures on the skin of a South American fish might serve as high-velocity water-flow detectors.

kerry grens
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

GLOM ARTISTS: These finger-length South American catfish are able to sense fast-flowing water and adhere to a nearby surface in response.COURTESY OF DAPHNE SOARESAfter spending all day trapping catfish in a dark cave near a cloud forest in Ecuador, neurophysiologist Daphne Soares and a graduate student emerged late in the evening only to find their exit route from the cave blocked by members of a tribe engaged in a ceremonial gathering. “They were all covered in mud . . . and they were so incredibly surprised” to see a couple of researchers with headlamps and fishing gear, she says. Soares and her student walked past, having collected what they were looking for, and made their way to a makeshift laboratory—“a chicken coop with a generator”—they had set up a few miles away.

Soares had come to this part of South America searching for Astroblepus pholeter, one of a number of Andean catfish that dwell in fast-flowing streams. Daily, the Jumandy Cave floods from heavy rains; water gushes through the cavern and into a recreational swimming area. For years, Soares, a professor at the University of Maryland, had visited the cave to study the ways in which this species had adapted to its dark and turbulent environment. Fish typically employ mechanoreceptors called neuromasts, which make up a sensory stripe along the length of the fish’s body called the lateral line, to detect movement or vibrations in water, but A. pholeter doesn’t have an abundance of neuromasts, Soares says. What they do have, she eventually observed, are little joysticks ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours