Splicing chips

The process of RNA splicing by the spliceosome helps to generate molecular diversity beyond the genome sequence. In the May 3 Science, Tyson Clark and colleagues at the University of California, Santa Cruz describe a genome-wide study of splicing in yeast (Science 2002, 296:907-910).Clark et al. designed custom microarrays with oligonucleotides capable of distinguishing between spliced and unspliced RNAs, and demonstrated the specificity of this splicing-specific microarray by analysing RNA from

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

The process of RNA splicing by the spliceosome helps to generate molecular diversity beyond the genome sequence. In the May 3 Science, Tyson Clark and colleagues at the University of California, Santa Cruz describe a genome-wide study of splicing in yeast (Science 2002, 296:907-910).

Clark et al. designed custom microarrays with oligonucleotides capable of distinguishing between spliced and unspliced RNAs, and demonstrated the specificity of this splicing-specific microarray by analysing RNA from Saccharomyces cerevisiae with a mutation in the prp4-1 gene, which encodes a component of the spliceosome. They studied 18 mutant yeast strains lacking non-essential genes linked to RNA processing and found several examples of increased accumulation of introns and loss of spliced junction sequences. They also found that different mutations had distinct effects on spliced and unspliced RNA.

This strategy will could be applied to the human genome in which as many as 60% of transcript may undergo ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Jonathan Weitzman

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours