Spying on Transgenic Ants Reveals How Their Brains Respond to Alarm Odors

By successfully creating transgenic ants for the first time, researchers discovered that danger-signaling pheromones activate a sensory hub in the ants’ brains.

alejandra manjarrez
| 2 min read
In this transgenic ant pupa surrounded by wild type pupae, expression of red fluorescent protein shows throughout the ant pupa body.

In this transgenic ant pupa surrounded by wild type pupae, expression of red fluorescent protein shows throughout the ant pupa body.

Taylor Hart

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Ants rely heavily on their acute senses of smell to orchestrate social behaviors, including seeking food or defending their colonies. While the ant olfactory system is more complex than that of other insects, the understanding of how it works is still limited. By using transgenic ants where olfactory neurons light up when activated, researchers discovered a sensory center that receives the input from the alarm pheromones produced by other colony members when sensing danger. Their findings were published recently in Cell.1

See “The Genetics of Society

“Ants have evolved all these different pheromones that they use to pass different kinds of information to one another, and we see signatures of this” in their brains, said Taylor Hart, a neurobiologist at the Rockefeller University and coauthor of the study. To detect these scent markers, ants use their antennae, from which sensory neurons connect to large brain structures known as the antennal lobes. These lobes are “subdivided anatomically into many ball-shaped structures that are called glomeruli,” explained Hart. There are approximately 500 glomeruli in each ant antennal lobe, but up until now, it was not clear how they activate in response to different odors.

“This is all very interesting to us because we want to know” how these brain structures work at a functional level and how the different pheromones that maintain ant societies are perceived and encoded within the ant brain, Hart said.

To explore these questions, Hart and her colleagues created transgenic ants, which is a milestone that has never been achieved before. By introducing a fluorescent marker that reports the calcium activity of olfactory sensory neurons in the clonal raider ant, Ooceraea biroi, the team monitored the neural activity in the animals’ antennal lobes. Then they exposed these transgenic ants to four different alarm pheromones and spied on their brains.

See “Ant Pupae Feed Adults, Larvae with Secreted Liquid

The alarm pheromones activated one to six glomeruli, a handful of the approximately 500 found in the antennal lobe. The scientists also noticed a significant overlap among the glomeruli activated by each of the pheromones tested. For instance, three of these scents, specifically those inducing panic that results in nest evacuation, often activated the same glomerulus. When Hart and her colleagues mapped two other relevant glomeruli for this response, they found that all three were spatially clustered.

These observations suggest that these danger-signaling pheromones feed into a sensory hub rather than triggering a more spatially distributed activation of glomeruli. “We don’t know for sure that the sparse representation is true for all odors,” said Hart, but based on the brain response to some other scents they tested, “it could also be a general trend in this animal.”

Investigating these neurobiological questions in ants “opens up a lot of possibilities for understanding how these organisms use these chemical and social cues for manifesting all [of their] fascinating behaviors,” said Duke University insect neurobiologist Pelin Volkan, who was not involved in this study. She added that the transgenic ants developed by this research team will significantly contribute to that goal.

Figuring out the neuroscience fundamentals underlying these animals’ social interactions and how those behaviors emerge is going to be “super powerful,” Volkan concluded.

Keywords

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez, PhD

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University.
Share
You might also be interested in...
Loading Next Article...
You might also be interested in...
Loading Next Article...
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

dispensette-s-group

BRAND® Dispensette® S Bottle Top Dispensers for Precise and Safe Reagent Dispensing

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo