Stem cell woes

Credit: © YORGAS NIKAS/PHOTO RESEARCHERS" /> Credit: © YORGAS NIKAS/PHOTO RESEARCHERS Scientists once believed that human embryonic stem cells were extraordinarily stable in culture. In 2004, Peter Andrews at the University of Sheffield, UK, and colleagues revealed definitive evidence that lines can develop chromosomal abnormalities.1 Sheffield's group discovered three independent human embryonic stem cell lines that gained chromosome 17q on five independent occasions,

Written byCharles Q. Choi
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Scientists once believed that human embryonic stem cells were extraordinarily stable in culture. In 2004, Peter Andrews at the University of Sheffield, UK, and colleagues revealed definitive evidence that lines can develop chromosomal abnormalities.1 Sheffield's group discovered three independent human embryonic stem cell lines that gained chromosome 17q on five independent occasions, after 22 to 60 passages, and occasionally gained chromosome 12. Both are aberrations commonly seen in human embryonal carcinoma cells.

Although suspected for some time, the evidence that such chromosomal changes took place served as a rallying call in the aftermath of federal restrictions placed on human embryonic stem cell lines created after 2001. "The million dollar question that now needs to be answered is what the functional consequences of these changes are" for stem cell therapies, says Anirban Maitra at Johns Hopkins University. Research should also investigate what the mutation rates of human embryonic stem cells are, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research