Stem Cells Myelinate Human Brain

In a Phase I trial, researchers show that neural stem cells transplanted into humans can differentiate and begin producing myelin.

Written bySabrina Richards
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Flickr. MikeBlogs.Neural stem cells transplanted into the brains of people with Pelizaeus-Merzbacher disease (PMD) can differentiate and begin producing the myelin sheaths that these patients lack, according to results of a Phase I clinical trial published today (October 10) in Science Translational Medicine. Myelin, the fatty insulating layer wrapped around nerve axons, is essential for proper nerve signaling. Researchers hope that these stem cell-derived myelin-producing cells may someday help patients recover brain function.

“This is an encouraging first step,” said neurogeneticist Grace Hobson at Nemours Biomedical Research in Delaware, who investigates PMD but did not participate in the research. The disease currently has no treatment, but the new results give hope that stem cell transplantation may one day help restore nerve function in PMD patients, she said.

Myelin, produced by oligodendrocytes in the brain and spinal cord, insulates axons that extend from neuron bodies and signal between different parts of the central nervous system. Diseases that damage myelin, like multiple sclerosis, or prevent myelin production altogether, like PMD, inhibit proper communication between neurons and often lead to defects in cognitive function. Recently, researchers have looked to stem cell transplants as a possible strategy for boosting myelin by increasing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies