Stem Cells Myelinate Human Brain

In a Phase I trial, researchers show that neural stem cells transplanted into humans can differentiate and begin producing myelin.

Written bySabrina Richards
| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Flickr. MikeBlogs.Neural stem cells transplanted into the brains of people with Pelizaeus-Merzbacher disease (PMD) can differentiate and begin producing the myelin sheaths that these patients lack, according to results of a Phase I clinical trial published today (October 10) in Science Translational Medicine. Myelin, the fatty insulating layer wrapped around nerve axons, is essential for proper nerve signaling. Researchers hope that these stem cell-derived myelin-producing cells may someday help patients recover brain function.

“This is an encouraging first step,” said neurogeneticist Grace Hobson at Nemours Biomedical Research in Delaware, who investigates PMD but did not participate in the research. The disease currently has no treatment, but the new results give hope that stem cell transplantation may one day help restore nerve function in PMD patients, she said.

Myelin, produced by oligodendrocytes in the brain and spinal cord, insulates axons that extend from neuron bodies and signal between different parts of the central nervous system. Diseases that damage myelin, like multiple sclerosis, or prevent myelin production altogether, like PMD, inhibit proper communication between neurons and often lead to defects in cognitive function. Recently, researchers have looked to stem cell transplants as a possible strategy for boosting myelin by increasing ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH