Structure of a DNA damage repair protein

The Ku heterodimer forms a cradle in which broken DNA strands rest whilst being repaired.

Written byDavid Bruce
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Damage to DNA strands resulting in breakage can lead to chromosomal translocation, uncontrolled cellular growth and cancer. These breaks can occur following exposure to agents such as ionizing radiation, or in programmed events such as gene shuffling. In mammalian cells this damage is repaired by a family of proteins involved in non-homologous end joining (NHEJ).

In August 9 Nature, John Walker and colleagues at the Memorial Sloan-Kettering Cancer Center, New York report the structure of the Ku heterodimer, a well known DNA repair protein and the nature of it's interaction with the DNA double strands (Nature 2001, 412:607-614).

Walker et al. employed X-ray crystallography to observe the Ku-DNA complex and multiple wavelength anomalous diffraction to look at the Ku heterodimer itself. This confirmed that the protein was composed of two subunits — Ku70 and Ku80. Previous studies have shown that both Ku70 and Ku80 knock-outs result in a high frequency ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH