Stubbornly Persistent

Microorganisms continually challenge our assumptions of what life can achieve.

Written byMary Beth Aberlin
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEWhat would happen in a world without microbes?” ask researchers Jack Gilbert and Josh Neufeld in a December thought-experiment article in PLOS Biology. After considering the intricate interdependencies that exist among our planet’s life forms, the authors conclude that “although life would persist in the absence of microbes, both the quantity and quality of life would be reduced drastically.” To this I would like to add that life-science studies would be a lot more boring. And the feature well of this issue would be empty.

The microbial ancestors from which complex life evolved faced challenging environmental conditions, and their extant relatives continue to astonish with their ability to withstand temperatures, pressures, and radiation doses that would do in any human. So wide-ranging are the adaptations of these so-called extremophiles that they inform the search for life on other planets. That’s why a two-month-long burst of methane on Mars, announced at the fall meeting of the American Geophysical Union (coincidentally, the same day the PLOS Biology article ran), generated such excitement. The methane spike could have been the result of a geologic process, of course, but what if it signaled the presence of microbes in residence beneath the Martian surface?

In a world without microbes, life-science studies would be a lot ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo
Discover how to streamline tumor-infiltrating lymphocyte production.

Producing Tumor-infiltrating Lymphocyte Therapeutics

cytiva logo

Products

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella