Stubbornly Persistent

Microorganisms continually challenge our assumptions of what life can achieve.

Written byMary Beth Aberlin
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ANDRZEJ KRAUZEWhat would happen in a world without microbes?” ask researchers Jack Gilbert and Josh Neufeld in a December thought-experiment article in PLOS Biology. After considering the intricate interdependencies that exist among our planet’s life forms, the authors conclude that “although life would persist in the absence of microbes, both the quantity and quality of life would be reduced drastically.” To this I would like to add that life-science studies would be a lot more boring. And the feature well of this issue would be empty.

The microbial ancestors from which complex life evolved faced challenging environmental conditions, and their extant relatives continue to astonish with their ability to withstand temperatures, pressures, and radiation doses that would do in any human. So wide-ranging are the adaptations of these so-called extremophiles that they inform the search for life on other planets. That’s why a two-month-long burst of methane on Mars, announced at the fall meeting of the American Geophysical Union (coincidentally, the same day the PLOS Biology article ran), generated such excitement. The methane spike could have been the result of a geologic process, of course, but what if it signaled the presence of microbes in residence beneath the Martian surface?

In a world without microbes, life-science studies would be a lot ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform