Study: Mitotic Cells Can Reprogram Mouse Sperm

Murine embryos undergoing first cell division can reprogram injected sperm and develop normally.

| 4 min read

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

Diagram showing sperm injection into a one-cell embryo in the phICSI method (a); microscopy (with DNA stained blue) of sperm being injected into a one-cell mouse embryo, which has a diameter of about 0.1 mm (b); some of the resulting two-cell embryo cells have a sperm-derived genome (red) and an egg-derived one (yellow), which can develop to form offspring (c)UNIVERSITY OF BATHWhen a sperm fertilizes an egg, it transforms from a fully differentiated cell into half the genetic material of an embryo. This transformation is called reprogramming. For centuries, scientists thought that only eggs could effect this change in sperm, University of Bath biologist Anthony Perry told The Scientist. For the first time, Perry and colleagues have created viable mouse embryos starting not with eggs but with mitotic cells, they reported in a study published today (September 13) in Nature Communications. Many of these embryos developed to term; the resulting pups were healthy and, later, able to breed viable offspring themselves.

The team “shows that eggs that have already begun embryonic development, and are about to divide from the one-cell to two-cell stage, still retain the ability to ‘remodel’ sperm DNA,” Hugh Clarke, a developmental biologist at McGill University in Montreal who was not involved in the work, told The Scientist in an email. “So this ability is not restricted to eggs at the time of fertilization.”

“This is the first time that anyone has been able to demonstrate that embryos can reprogram a differentiated cell of any kind,” said Perry. The discovery raises the possibility that other mitotic cell types might also be able to reprogram sperm. If so, Perry added, “it might one day mean that we could generate embryos from other cell types—perhaps ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Ashley P. Taylor

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution