Support Cells Gain Stem Cell-Like Properties After Nerve Injury

When peripheral nerves are severed, Schwann cells at the injury site begin to proliferate and exhibit stem cell-like gene expression patterns.

Written byDiana Kwon
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

REGENERATION: Fluorescently labeled Schwann cells (pink) migrate into the wound site of a severed nerve and lay the foundations for nerve repair.MELANIE CLEMENTS, PARRINELLO LAB

The paper M.P. Clements et al., “The wound microenvironment reprograms Schwann cells to invasive mesenchymal-like cells to drive peripheral nerve regeneration,” Neuron, 96:98-114.e7, 2017. To protect and repair In the peripheral nervous system, axons are able to mend themselves after injury thanks to Schwann cells, a type of glial cell responsible for producing myelin, the fatty substance that wraps around some nerve fibers. Schwann cells migrate to the injury site and help guide the regrowing axons through a connective-tissue bridge that forms across the gap. Dual identities Prior studies have shown that while aiding repair, Schwann cells transition from a myelinating phenotype to a progenitor-like state. This switching is similar to what happens when adult cells are genetically reprogrammed into induced pluripotent stem cells for ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • Diana is a freelance science journalist who covers the life sciences, health, and academic life. She’s a regular contributor to The Scientist and her work has appeared in several other publications, including Scientific American, Knowable, and Quanta. Diana was a former intern at The Scientist and she holds a master’s degree in neuroscience from McGill University. She’s currently based in Berlin, Germany.

    View Full Profile

Published In

December 2017

The Embryo's Secrets Revealed

Genomic reprogramming in early development

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies

Parse Logo

Parse Biosciences and Graph Therapeutics Partner to Build Large Functional Immune Perturbation Atlas

Sino Biological Logo

Sino Biological's Launch of SwiftFluo® TR-FRET Kits Pioneers a New Era in High-Throughout Kinase Inhibitor Screening

SPT Labtech Logo

SPT Labtech enables automated Twist Bioscience NGS library preparation workflows on SPT's firefly platform