Telomerase helps mend broken hearts

Cardiac muscle regeneration after injury is limited by 'irreversible' cell cycle exit via down-regulation of telomerase reverse transcriptase (TERT). In the August 21 online version of the Proceedings of the National Academy of Sciences, Hidemasa Oh and colleagues from the Baylor College of Medicine, Houston, Texas, show that mice genetically engineered to overexpress TERT produce more and bigger cardiac myocytes, which live longer than those in normal mice.Oh et al. modified mice to express TER

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Cardiac muscle regeneration after injury is limited by 'irreversible' cell cycle exit via down-regulation of telomerase reverse transcriptase (TERT). In the August 21 online version of the Proceedings of the National Academy of Sciences, Hidemasa Oh and colleagues from the Baylor College of Medicine, Houston, Texas, show that mice genetically engineered to overexpress TERT produce more and bigger cardiac myocytes, which live longer than those in normal mice.

Oh et al. modified mice to express TERT in cardiac muscle and found that this change was sufficient to rescue telomerase activity and telomere length. Transgenic mice developed a hypercellular ventricle, with increased myocyte density and DNA synthesis and by 12 weeks cardiac cells became hypertrophic. Viral delivery of TERT reproduced the hypertrophy in cultured cardiac myocytes. In addition, the TERT virus and transgene conferred protection from apoptosis, in vitro and in vivo (Proc Natl Acad Sci USA 2001, 10.1073/pnas.191169098).

"Understanding how ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Tudor Toma

    This person does not yet have a bio.
Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit