The Evolution of Drug Resistance

Researchers use whole-genome sequencing to keep tabs on the development of antibiotic resistance in bacteria.

Written byRuth Williams
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A digitally colorized micrograph image of E. coliWIKIMEDIA COMMONS, MATTOSAURUS

Using whole-genome sequencing to track the evolution of bacteria as they are exposed to ever-increasing levels of antibiotics, researchers have identified some consistent—and potentially practicable—genetic mutations, pointing to new possibilities for conquering resistant bugs, according to a study published in today’s (December 18) Nature Genetics. And a second study in the journal, also using whole-genome sequencing, examines how drug-resistant bacteria continue to evolve after antibiotic treatment stops, which may have implications for overall resistance management.

“Both of these studies are fine examples of the utility of whole genome sequencing to test, as well as generate, hypotheses,” Bruce Levin of Emory University in Atlanta and his PhD student Pierre Ankomah said in an email. “They both address important questions about antibiotic resistance.”

Antibiotic resistance is a ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems

The Scientist Placeholder Image

Waters Enhances Alliance iS HPLC System Software, Setting a New Standard for End-to-End Traceability and Data Integrity 

The Scientist Placeholder Image

Agilent Unveils the Next Generation in LC-Mass Detection: The InfinityLab Pro iQ Series