The Human Genome Consortium paper: sequencing by collaborative mapping

In the February 15 Nature, the International Human Genome Sequencing Consortium announces the completion of the first draft of the sequence of the human genome. The publication is the achievement of the decade-long Human Genome Project based on open international collaboration (involving 20 groups) and rapid, unrestricted data release (via GenBank). The draft sequence covers 94% of the genome, which is estimated to be about 3.2 Gigabases (Gb), 25 times the size of any previously sequenced genome

Written byJonathan Weitzman
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In the February 15 Nature, the International Human Genome Sequencing Consortium announces the completion of the first draft of the sequence of the human genome. The publication is the achievement of the decade-long Human Genome Project based on open international collaboration (involving 20 groups) and rapid, unrestricted data release (via GenBank). The draft sequence covers 94% of the genome, which is estimated to be about 3.2 Gigabases (Gb), 25 times the size of any previously sequenced genome and 8 times the sum of all sequenced genomes. The 61-page report by Lander et al. (Nature 2001, 409:860-921) details the sequencing strategy and analysis of the genomic landscape, repetitive structures, gene content and comparisons with other sequenced genomes.

The Human Genome Project was based on a 'hierarchical shotgun sequencing' approach involving the assembly of large-scale physical maps, followed by coordinated systematic sequencing of selected clones. Bacterial and P1-derived artificial chromosomes (BACs and ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems