The Neurobiology of Individuality

Mice that explore more have higher levels of neurogenesis, suggesting a link between experience, brain plasticity, and the emergence of distinct personalities.

Written byDan Cossins
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAWhen a group of genetically identical mice lived in the same complex enclosure for 3 months, individuals that explored the environment more broadly grew more new neurons than less adventurous mice, according to a study published today (May 9) in Science. This link between exploratory behavior and adult neurogenesis shows that brain plasticity can be shaped by experience and suggests that the process may promote individuality, even among genetically identical organisms.

“This is a clear and quantitative demonstration that individual differences in behavior can be reflected in individual differences in brain plasticity,” said Fred Gage of the Salk Institute for Biological Studies in La Jolla, California, who was not involved the study. “I don’t know of another clear example of that . . . and it tells me that there is a tighter relationship between [individual] experiences and neurogenesis than we had previously thought.”

Scientists have often tried to tackle the question of how individual differences in behavior and personality develop in terms of the interactions between genes and environment. “But there is next to nothing [known] about the neurobiological mechanisms underlying individuality,” said Gerd Kempermann of the German Center for Neurodegenerative Diseases in Dresden.

One ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH