The Neurobiology of Individuality

Mice that explore more have higher levels of neurogenesis, suggesting a link between experience, brain plasticity, and the emergence of distinct personalities.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

WIKIMEDIA, RAMAWhen a group of genetically identical mice lived in the same complex enclosure for 3 months, individuals that explored the environment more broadly grew more new neurons than less adventurous mice, according to a study published today (May 9) in Science. This link between exploratory behavior and adult neurogenesis shows that brain plasticity can be shaped by experience and suggests that the process may promote individuality, even among genetically identical organisms.

“This is a clear and quantitative demonstration that individual differences in behavior can be reflected in individual differences in brain plasticity,” said Fred Gage of the Salk Institute for Biological Studies in La Jolla, California, who was not involved the study. “I don’t know of another clear example of that . . . and it tells me that there is a tighter relationship between [individual] experiences and neurogenesis than we had previously thought.”

Scientists have often tried to tackle the question of how individual differences in behavior and personality develop in terms of the interactions between genes and environment. “But there is next to nothing [known] about the neurobiological mechanisms underlying individuality,” said Gerd Kempermann of the German Center for Neurodegenerative Diseases in Dresden.

One ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Dan Cossins

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo