The Sounds of Silence

Science-based tinnitus therapeutics are finally coming into their own.

Written byJenny Rood
| 8 min read

Register for free to listen to this article
Listen with Speechify
0:00
8:00
Share

STOP THE RINGING: Tinnitus can manifest early in auditory perception, as damage to the inner ear, or in the brain where sounds are processed. Researchers developing treatments for the condition are targeting various points along this pathway.
See full infographic: JPG
© MARI SCHMITT/SCIENCE SOURCE; © ENCYCLOPEDIA BRITANNICA/UIG/GETTY IMAGES
It often starts off with a bang. Many a soldier, construction worker, concertgoer, or innocent passerby exposed to a loud noise walks away with the telltale symptom of tinnitus, a persistent ringing in the ears. The condition can also arise from other ear traumas, such as middle-ear infections or exposure to high pressure while scuba diving, and begins with damage to the hair cells in the cochlea of the inner ear or to the auditory nerve. Until recently, such damage was thought to be the cause of the phantom sounds that plague tinnitus sufferers. Now, researchers are realizing that it’s much more complex than that.

“Damage to hair cells and auditory nerve fibers sets the stage for the development of tinnitus,” says Jennifer Melcher of the Massachusetts Eye and Ear Infirmary. But the true culprit is really the brain, which eventually begins to compensate for the loss of input from the ear by “turning up the volume” on the sound signals it is trying to pick up, she adds. Navzer Engineer, chief scientific officer of Dallas-based MicroTransponder, which is developing a neurostimulative treatment for tinnitus, agrees: “Cells in the brain don’t stay dormant” even though they have lost input from the ear, he says.

It’s unclear when the condition transitions from the ear to the brain. Researchers also do not yet know whether the brain or peripheral nerves are primarily ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH