To Retain a Brain

Exceptional neural fossil preservation helps answer questions about ancient arthropod evolution.

Written byKaren Zusi
| 5 min read

Register for free to listen to this article
Listen with Speechify
0:00
5:00
Share

BEYOND STONE: This fossil of a Cambrian euarthropod, Fuxianhuia protensa, shows black traces of preserved neural tissue.X. MA ET AL., CURR BIOL, 25:2969-75, 2015

In 2002, Xiaoya Ma spent most of her days at Yunnan University in China freeing fossilized arthropods from their rocky tombs. Under a microscope, she scraped away sediment with a needle to reveal parts of the fossils that weren’t exposed during field collection. For one particular specimen, a wormlike arthropod ancestor called Paucipodia inermis, Ma saw some unusual shapes as she removed extraneous material from around the head—they resembled ganglia and nerve cords. “I didn’t initially realize what they were,” Ma says. “Slowly, slowly, it came to me that these might be brain structures.”

Little did she know, Ma was about to galvanize the field of neuropaleontology—the study of fossilized brains and their evolutionary context. Researchers had published brief descriptions of fossilized neural tissue remnants ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH