Transfection using lasers

A variety of mammalian cells can be efficiently transfected with DNA using treatment with a femtosecond pulse laser.

Written byTudor Toma
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

For successful delivery of foreign DNA into cells in vitro, the cell's architecture must remain intact while allowing a high degree of transfection. But current methods give sub-optimal transfection efficiencies. In 18 July Nature, Uday Tirlapur and Karsten König at the Friedrich Schiller University, Jena, Germany, show that a femtosecond pulse laser can efficiently transfect a variety of mammalian cells with DNA (Nature 2002, 418:290-291).

Tirlapur and König used a high-intensity near-infrared, femtosecond-pulsed laser beam directed at Chinese hamster ovary and rat–kangaroo kidney epithelial (PtK2) cells. The laser made transient perforations in the cell membrane through which a plasmid DNA vector encoding enhanced green fluorescent protein (EGFP) could enter. Irrespective of cell type, the transfection rate achieved using this technique was invariably 100%.

"The ability to transfer foreign DNA safely and efficiently into specific cell types (including stem cells) — circumventing the need for mechanical, electrical or chemical means — ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo