Tumor malignancy linked to rigidity

These findings could help explain why cells on plastic dishes transform, lead to new anticancer drugs

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Tissue rigidity might help promote tumor progression, scientists report today in this month's Cancer Cell. These findings help demonstrate how stiff surfaces can lead to malignant growth, and could help explain why continued culturing of normal cells for many passages on rigid plastic dishes often leads to spontaneous transformation, Don Ingber at Harvard Medical School, who did not participate in this study, told The Scientist.

Tumors are stiffer than normal tissue. To determine if that stiffness contributes to a tumor's malignancy, Valerie Weaver at the University of Pennsylvania in Philadelphia and her colleagues added cells to a three-dimensional gel culture designed to mimic the extracellular matrix, made of synthetic acrylamide or a mix of natural basement membrane and collagen. The researchers increased stiffness of the matrix by boosting either acrylamide cross-linking or collagen levels. When normal mammary epithelial cells were raised in a culture whose stiffness matched a normal extracellular ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Charles Choi

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo