Unexpected Brain Strategy Links Two Events Separated by Time

A new study in mice does not find evidence supporting two popular ideas for the mechanism for bridging the temporal time gap between two paired stimuli.

Written byAlejandra Manjarrez, PhD
| 4 min read
memory trace conditioning ca1 hippocampal pyramidal neurons

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, FRANK RAMSPOTT

The brain is a master of forming patterns, even when it involves events occurring at different times. Take the phenomenon of trace fear conditioning—scientists can get an animal to notice the relationship between a neutral stimulus and an aversive stimulus separated by a temporal chasm (the trace) of a few or even tens of seconds. While it’s a well-established protocol in neuroscience and psychology labs, the mechanism for how the brain bridges the time gap between two related stimuli in order to associate them is “one of the most enigmatic and highly investigated” questions, says Columbia University neuroscientist Attila Losonczy.

If the first stimulus is finished, the information about its presence and identity “should be somehow maintained through some neuronal mechanism,” he explains, so it can be associated with the second stimulus coming later.

Losonczy and his colleagues have recently investigated how this might occur ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies