Unexpected Brain Strategy Links Two Events Separated by Time

A new study in mice does not find evidence supporting two popular ideas for the mechanism for bridging the temporal time gap between two paired stimuli.

Written byAlejandra Manjarrez, PhD
| 4 min read
memory trace conditioning ca1 hippocampal pyramidal neurons

Register for free to listen to this article
Listen with Speechify
0:00
4:00
Share

ABOVE: © ISTOCK.COM, FRANK RAMSPOTT

The brain is a master of forming patterns, even when it involves events occurring at different times. Take the phenomenon of trace fear conditioning—scientists can get an animal to notice the relationship between a neutral stimulus and an aversive stimulus separated by a temporal chasm (the trace) of a few or even tens of seconds. While it’s a well-established protocol in neuroscience and psychology labs, the mechanism for how the brain bridges the time gap between two related stimuli in order to associate them is “one of the most enigmatic and highly investigated” questions, says Columbia University neuroscientist Attila Losonczy.

If the first stimulus is finished, the information about its presence and identity “should be somehow maintained through some neuronal mechanism,” he explains, so it can be associated with the second stimulus coming later.

Losonczy and his colleagues have recently investigated how this might occur ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • alejandra manjarrez

    Alejandra Manjarrez is a freelance science journalist who contributes to The Scientist. She has a PhD in systems biology from ETH Zurich and a master’s in molecular biology from Utrecht University. After years studying bacteria in a lab, she now spends most of her days reading, writing, and hunting science stories, either while traveling or visiting random libraries around the world. Her work has also appeared in Hakai, The Atlantic, and Lab Times.

    View Full Profile
Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Accelerating Recombinase Reprogramming with Machine Learning

Accelerating Recombinase Reprogramming with Machine Learning

Genome Modeling and Design: From the Molecular to Genome Scale

Genome Modeling and Design: From the Molecular to Genome Scale

Twist Bio 
Screening 3D Brain Cell Cultures for Drug Discovery

Screening 3D Brain Cell Cultures for Drug Discovery

DNA and pills, conceptual illustration of the relationship between genetics and therapeutic development

Multiplexing PCR Technologies for Biopharmaceutical Research

Thermo Fisher Logo

Products

waters-logo

Waters and BD's Biosciences & Diagnostic Solutions Business to Combine, Creating a Life Science and Diagnostics Leader Focused on Regulated, High-Volume Testing

zymo-research-logo

Zymo Research Partners with Harvard University to Bring the BioFestival to Cambridge, Empowering World-class Research

10x-genomics-logo

10x Genomics and A*STAR Genome Institute of Singapore Launch TISHUMAP Study to Advance AI-Driven Drug Target Discovery

The Scientist Placeholder Image

Sino Biological Sets New Industry Standard with ProPure Endotoxin-Free Proteins made in the USA