Unraveling Protein Folding

Figuring out how denatured proteins morph into their folded, active forms isn't just a challenge; it's one of the most elusive problems in biology.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© 2004 National Academy of Sciences (From M.L. DeMarco, et al, PNAS, 101:2293–2298, 2004)

Figuring out how denatured proteins morph into their folded, active forms isn't just a challenge; it's one of the most elusive problems in biology. Protein chemists now have more computational power to devote to the problem, thanks to a recent award of two million processor hours on the Department of Energy's 10-teraflops IBM supercomputer at the National Energy Research Scientific Computing Center in Berkeley, Calif. The award, part of the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, supports a project entitled "Molecular Dynameomics," whose ultimate goal is to create a repository for molecular-dynamics data to be used in protein structure predictions.

"We want to simulate every protein fold," says project leader Valerie Daggett, professor of medicinal chemistry at the University of Washington in Seattle. Daggett's research bolsters experimental work on protein folding ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Meet the Author

  • Melissa Lee Phillips

    This person does not yet have a bio.

Published In

Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo
Characterizing Immune Memory to COVID-19 Vaccination

Characterizing Immune Memory to COVID-19 Vaccination

10X Genomics
Optimize PCR assays with true linear temperature gradients

Applied Biosystems™ VeriFlex™ System: True Temperature Control for PCR Protocols

Thermo Fisher Logo

Products

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo
Sapio Sciences logo

Sapio Sciences Introduces Biorepository Management Solution