Use of Human Induced Pluripotent Stem Cells for Predicting Diverse Cardiotoxicities

The Scientist brings together a panel of experts to educate you about the successes and caveats of using iPSC-derived cells in toxicological assays.


Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Accurately predicting cardiotoxicity and elucidating the underlying mechanisms remain vexing and expensive problems for drug discovery. This is due, in part, to the wide range of causes and manifestations. Ion-channel block can lead to acute and delayed arrhythmias, while biochemical toxicities can result in cell death, abnormal cardiac function, and even heart failure and death. Finding physiologically relevant, reproducible, and reliable cell models that can be used to detect these end points at preclinical and discovery stages has been a challenge, as most toxicity testing is done either by using immortalized cancer cell lines, primary explanted somatic cells, or live animals. The development of human induced pluripotent stem cell (iPSC)-derived cell lines as models for drug-toxicity testing offers a promising alternative that is more physiologically relevant, more predictive, and more time and cost efficient. Although iPSC-derived cardiomyocytes have not yet replaced well-established FDA-approved toxicological methods, the FDA has fast-tracked efforts ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer