Use of Induced Pluripotent Stem Cells in Drug Discovery: Challenges and Opportunities

The Scientist brings together a panel of experts who parse the hope and hype in an effort to educate the audience about the successes and caveats of using iPSCs.


Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

A lot of optimism and promise surrounds the use of induced pluripotent stem cells (iPSCs) for a number of drug discovery and development applications. Human-derived iPSCs are thought to be more physiologically relevant and better suited for modeling disease pathophysiology and for understanding a drug’s mechanism of action. Hence, cell-based in vitro screening using iPSCs is gaining recognition as a tool for disease modeling, predicting drug efficacy, and toxicology testing. However, technical challenges exist in culturing, differentiating, and characterizing these cells, and skeptics remain unconvinced about the validity of the results obtained.

The Scientist brings together a panel of experts who will parse the hope and hype in an effort to educate the audience about the successes and caveats of using iPSCs. Attendees can interact with the experts during the live webinar by asking questions and sharing their experiences using stem cells.

DR. KENNETH S. ZARET is the Joseph Leidy Professor in the Department of Cell and Developmental Biology at the Perelman School of Medicine, University of Pennsylvania. He is also the associate director of UPenn's Institute for Regenerative Medicine and the codirector of UPenn's Program in Epigenetics. His laboratory discovered the mechanism by which gene regulatory factors, termed “pioneer factors,” endow the competence of embryos to produce different types of cells. Zaret's laboratory also identified a dynamic signaling network that coordinately induces liver or pancreas cell fates in the embryo. The information is being used by many laboratories to direct the programming of liver and pancreatic stem cells for biomedical and therapeutic applications. Recently, his group used stem-cell technology to reprogram human pancreatic cancer cells and found that the reprogrammed cells could progress through the early stages of pancreatic cancer. The cells are being used as a means to discover marker proteins that are released from live human pancreatic cancer cells at early stages of the disease.

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer