Using DNA to Detect Dark Matter

Particle physicists and biologists unite to answer one of the most puzzling questions of the universe: Does dark matter exist?

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

A Hubble Space Telescope image of the Sombrero galaxy, M104 NASA

For decades, physicists have been puzzled by the mystery of the universe’s missing mass. Known as dark matter, this mysterious stuff is thought to be at least five times more abundant than normal matter, and its gravitational pull is believed to shape galaxies and the visible universe itself. However, because dark matter particles don’t absorb or emit light, or even interact with normal matter, definitively proving its existence has been an astronomical challenge.

Enter genetics luminary George Church of Harvard University, who, along with dark matter expert at the University of Michigan in Ann Arbor, Katherine Freese, and others, believes he can use DNA to answer this Nobel-Prize-worthy question.

This motley team of biologists and physicists are currently working on building a dark matter detector ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Cristina Luiggi

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours

iStock

Agilent BioTek Cytation C10 Confocal Imaging Reader

agilent technologies logo