Vanishing Batteries

Researchers describe a major component of biodegradable implants.

Written byRina Shaikh-Lesko
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

A biodegradable chip developed by the Rogers Lab in 2012UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGNBiodegradable components of temporary implantable devices have been in the works for several years. Now, a team led by John Rogers of the University of Illinois at Urbana-Champaign has developed a biodegradable battery source for these devices, according to a study published last week (March 20) in Advanced Materials.

This advance follows on the heels of biodegradable silicon chips that Rogers’s team developed in 2012. The chips can monitor temperature and transmit the data via radio signals or heat up enough to prevent infections. But they rely on external power sources. “Almost all of the key building blocks are now available” to produce self-powered, biodegradable implants, Rogers told Nature News.

The biodegradable battery uses magnesium foil anodes, cathodes of iron, molybdenum, or tungsten, and a phosphate-buffered saline solution electrolyte. All these compounds are biocompatible and will slowly dissolve in the body at non-toxic levels. The team created a battery with four stacked cells. Its voltage depends on the materials used. A stacked magnesium-molybdenum battery produces enough energy to power a single LED light source.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH