Viral hit-and-run

Experiments with mutant adenoviruses reveal how viral oncoproteins target the cellular DNA-repair machinery to induce 'hit-and-run' transformation.

Written byJonathan Weitzman
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

A mammalian complex containing three nuclear proteins — Mre11, Rad50 and NBS1 — plays a critical role in repairing double-strand breaks in DNA and maintaining telomeres. In the 18 July Nature, Matthew Weitzman and colleagues at the Salk Institute in California, describe how viral oncoproteins can cooperate to disable the Mre11-Rad50-NBS1 complex (Nature 2002, 418:348-352).

Weitzman et al. demonstrate that polypeptides encoded by the adenovirus E4 early region are necessary to prevent concatemerization of the double-stranded DNA viral genome. They found that the E4 proteins target the human Mre11-Rad50-NBS1 complex by increasing the degradation of its components and changing their cellular localization. Two adenoviral proteins, E4orf6 and E4orf3, are needed to regulate this degradation and mislocalization.

Sustained expression of the E4 proteins is not required for viral transformation, leading the authors to suggest that down-regulation of the host DNA-damage machinery accounts for the 'hit-and-run' behavior of these viral oncoproteins.

Editor's ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH