Viral Skeleton

A newly discovered family of tubulins—members of the cytoskeleton—encoded by bacteriophages plays a role in arranging the location of DNA within virus’s bacterial host.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PhuZed Phage: When phage infect bacteria, host proteins begin transcribing a viral gene to produce PhuZ proteins (1), which form tubulin-like polymers that elongate from each pole of the cell (2). The filaments position replicating viral DNA at the cell’s center (3). Newly made viral DNA is encased in capsids (4), and released by lysis from the cell after final assembly (5) to infect other bacteria.

THE PAPERJ.A. Kraemer et al., “A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell,” Cell, 149:1488-99, 2012.Until a few years ago, the cytoskeleton was thought to be a structure unique to eukaryotes, but a stream of discoveries in the past decade has shown that prokaryotes also have actin- and tubulin-like components. Tubulins are proteins that form microtubules, which manage everything from sorting genetic material during cell division to supporting cell shape and assisting in cell motility. A collaboration between David Agard’s group at the University of California, San Francisco, and Joe Pogliano’s lab at UC San Diego has now shown that a bacteriophage virus also encodes a family of tubulin-like proteins, which appear to determine the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies