Viral Skeleton

A newly discovered family of tubulins—members of the cytoskeleton—encoded by bacteriophages plays a role in arranging the location of DNA within virus’s bacterial host.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

PhuZed Phage: When phage infect bacteria, host proteins begin transcribing a viral gene to produce PhuZ proteins (1), which form tubulin-like polymers that elongate from each pole of the cell (2). The filaments position replicating viral DNA at the cell’s center (3). Newly made viral DNA is encased in capsids (4), and released by lysis from the cell after final assembly (5) to infect other bacteria.

THE PAPERJ.A. Kraemer et al., “A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell,” Cell, 149:1488-99, 2012.Until a few years ago, the cytoskeleton was thought to be a structure unique to eukaryotes, but a stream of discoveries in the past decade has shown that prokaryotes also have actin- and tubulin-like components. Tubulins are proteins that form microtubules, which manage everything from sorting genetic material during cell division to supporting cell shape and assisting in cell motility. A collaboration between David Agard’s group at the University of California, San Francisco, and Joe Pogliano’s lab at UC San Diego has now shown that a bacteriophage virus also encodes a family of tubulin-like proteins, which appear to determine the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Image of a woman with her hands across her stomach. She has a look of discomfort on her face. There is a blown up image of her stomach next to her and it has colorful butterflies and gut bacteria all swarming within the gut.
November 2025, Issue 1

Why Do We Feel Butterflies in the Stomach?

These fluttering sensations are the brain’s reaction to certain emotions, which can be amplified or soothed by the gut’s own “bugs".

View this Issue
Olga Anczukow and Ryan Englander discuss how transcriptome splicing affects immune system function in lung cancer.

Long-Read RNA Sequencing Reveals a Regulatory Role for Splicing in Immunotherapy Responses

Pacific Biosciences logo
Research Roundtable: The Evolving World of Spatial Biology

Research Roundtable: The Evolving World of Spatial Biology

Conceptual cartoon image of gene editing technology

Exploring the State of the Art in Gene Editing Techniques

Bio-Rad
Conceptual image of a doctor holding a brain puzzle, representing Alzheimer's disease diagnosis.

Simplifying Early Alzheimer’s Disease Diagnosis with Blood Testing

fujirebio logo

Products

Eppendorf Logo

Research on rewiring neural circuit in fruit flies wins 2025 Eppendorf & Science Prize

Evident Logo

EVIDENT's New FLUOVIEW FV5000 Redefines the Boundaries of Confocal and Multiphoton Imaging

Evident Logo

EVIDENT Launches Sixth Annual Image of the Year Contest

10x Genomics Logo

10x Genomics Launches the Next Generation of Chromium Flex to Empower Scientists to Massively Scale Single Cell Research