Viroids, Viruses, and RNA Silencing

PATHOGENICITY MODEL:© National Academy of Sciences, USAViroid replication generates dsRNA intermediates, which are processed by Dicer into 21- to 25-nucleotide siRNAs. These siRNAs are then incorporated into siRNA – ribonuclease complexes (RISC). If the siRNA sequences significantly match host mRNAs, RISC may target them for degradation leading to disease symptoms. RISC can also target the viroid, forcing it to evolve and to adopt and maintain an RNA silencing-resistant structure. (Fr

Written byLeslie Pray
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

© National Academy of Sciences, USA

Viroid replication generates dsRNA intermediates, which are processed by Dicer into 21- to 25-nucleotide siRNAs. These siRNAs are then incorporated into siRNA – ribonuclease complexes (RISC). If the siRNA sequences significantly match host mRNAs, RISC may target them for degradation leading to disease symptoms. RISC can also target the viroid, forcing it to evolve and to adopt and maintain an RNA silencing-resistant structure. (From M.-B. Wang et al., Proc Natl Acad Sci, 101:3275–80, 2004.)

There is growing evidence that small RNA's believed to play an antiviral defense role in many organisms, may be acting as doubleagents. In March 2004, an international team of scientists reported that viroids, small infectious particles of naked RNA, may be employing RNA-silencing machinery to work their damage.1 Several weeks later, another international team announced the discovery of microRNAs in the Epstein-Barr virus (EBV), suggesting that miRNA-mediated gene suppression might ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo