Visualizing X Chromosome Inactivation

Researchers develop mouse lines to help them see whether the maternal or paternal X chromosome is inactivated.

Written byAbby Olena, PhD
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

In one mouse's left and right retinas, cells that silenced the maternal X chromosome are red and those that silenced the paternal X chromosome are green.NATHANS LAB, COURTESY OF NEURONIn every female eutherian mammalian cell, one of the two X chromosomes is inactivated. Though visual representations of X inactivation are well known—the pattern of a calico cat’s fur, for instance—understanding of how X chromosome inactivation affects disease and development is still limited. Now, Jeremy Nathans of Johns Hopkins University School of Medicine and his colleagues have generated transgenic mice in which X chromosome inactivation can be visualized in individual cells. The work was published this month (January 8) in Neuron.

The researchers generated mouse lines with Cre-inducible, nuclear-localized fluorescent reporters—either green fluorescent protein (GFP) or tdTomato, a red fluorescent protein—inserted into the locus for the X-linked Hprt gene. Each mouse line used a tissue-specific promoter to drive Cre, and the red and green fluorescent lines were bred to generate heterozygous females containing one of each X chromosome. The team analyzed the green and red fluorescence in each cell in which Cre was expressed, and found that the patterns of X inactivation varied widely from tissue to tissue and sometimes showed distinct left-right asymmetry. Variable X inactivation led to differences in the manifestation of an X-linked disease that affects blood vessels in the retina and contributed to biological diversity in the central nervous system.

“Diversity in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies