In one mouse's left and right retinas, cells that silenced the maternal X chromosome are red and those that silenced the paternal X chromosome are green.NATHANS LAB, COURTESY OF NEURONIn every female eutherian mammalian cell, one of the two X chromosomes is inactivated. Though visual representations of X inactivation are well known—the pattern of a calico cat’s fur, for instance—understanding of how X chromosome inactivation affects disease and development is still limited. Now, Jeremy Nathans of Johns Hopkins University School of Medicine and his colleagues have generated transgenic mice in which X chromosome inactivation can be visualized in individual cells. The work was published this month (January 8) in Neuron.

The researchers generated mouse lines with Cre-inducible, nuclear-localized fluorescent reporters—either green fluorescent protein (GFP) or tdTomato, a red fluorescent protein—inserted into the locus for the X-linked Hprt gene. Each mouse line used a tissue-specific promoter to drive...

“Diversity in the brain is the name of the game,” Nathans told The New York Times. He said that having different patterns of gene expression could help the brain process information. In their paper, the authors suggested that the system could be used in a variety of ways, including for visualization of X inactivation as mice develop and for sorting and comparing cells in which an X chromosome with a mutation is active to cells with normal X chromosomes to evaluate differences in gene expression.

Scientists will continue to explore how X chromosome inactivation occurs and affects biological processes. Harvard Medical School’s Jeannie Lee, a professor of genetics and pathology who was not involved in the research, told the Times that “the knowledge of this is exploding.”

Interested in reading more?

The Scientist ARCHIVES

Become a Member of

Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member?