Watching Live Cells

An international team brings the new technology of super-resolution imaging to the world of the living.

| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Filamentous actin, captured by super-resolution structured illumination microscopy VIMEO, HHMI NEWSEric Betzig, Stefan Hell, and William Moerner scooped up the 2014 Nobel Prize in Chemistry for their contributions to the development of super-resolved fluorescence microscopy, which broke the theoretical limit of microscopic resolution imposed by the wavelength of light. Now, Betzig, of Janelia Research Campus in Ashburn, Virginia, and his colleagues have applied the new techniques to watching live cells in action, generating images and videos of protein movement and interactions as the cells internalize molecules. The team published its results this week (August 27) in Science.

“These methods set a new standard for how far you can push the speed and non-invasiveness of super-resolution imaging,” Betzig said in a press release. “This will bring super-resolution to live-cell imaging for real.”

Betzig and his colleagues achieved their success by improving the spatial resolution of structured illumination microscopy (SIM). With traditional SIM, images are generated by switching on the fluorescent labels that researchers have used to tag specific proteins, followed by a wave of light that deactivates most of them. The tags in the darkest regions continue to fluoresce, however, sharpening the image. Repeating this process more than two dozen times can yield a high-resolution composite image. But the time it takes to switch the tags on and off has made the technique ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Jef Akst

    Jef Akst was managing editor of The Scientist, where she started as an intern in 2009 after receiving a master’s degree from Indiana University in April 2009 studying the mating behavior of seahorses.
Share
Image of a woman in a microbiology lab whose hair is caught on fire from a Bunsen burner.
April 1, 2025, Issue 1

Bunsen Burners and Bad Hair Days

Lab safety rules dictate that one must tie back long hair. Rosemarie Hansen learned the hard way when an open flame turned her locks into a lesson.

View this Issue
Conceptual image of biochemical laboratory sample preparation showing glassware and chemical formulas in the foreground and a scientist holding a pipette in the background.

Taking the Guesswork Out of Quality Control Standards

sartorius logo
An illustration of PFAS bubbles in front of a blue sky with clouds.

PFAS: The Forever Chemicals

sartorius logo
Unlocking the Unattainable in Gene Construction

Unlocking the Unattainable in Gene Construction

dna-script-primarylogo-digital
Concept illustration of acoustic waves and ripples.

Comparing Analytical Solutions for High-Throughput Drug Discovery

sciex

Products

Green Cooling

Thermo Scientific™ Centrifuges with GreenCool Technology

Thermo Fisher Logo
Singleron Avatar

Singleron Biotechnologies and Hamilton Bonaduz AG Announce the Launch of Tensor to Advance Single Cell Sequencing Automation

Zymo Research Logo

Zymo Research Launches Research Grant to Empower Mapping the RNome

Magid Haddouchi, PhD, CCO

Cytosurge Appoints Magid Haddouchi as Chief Commercial Officer