When Zinc Fingers Miss the Mark

Two new techniques identify how often zinc fingers nucleases cleave off-target sites.

Written byTia Ghose
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Zinc Finger bound to DNAWIKIMEDIA COMMONS, THOMAS SPLETTSTOESSER

Zinc finger nucleases are designed to be like heat-seeking missiles, precisely targeted to find and cut specific sequences of DNA. Occasionally, however, they may snip the wrong spot, causing unintended breaks. Two papers published today (August 7) in Nature journals describe ways to systematically find such off-target action, which could one day help design gene therapies that avoid collateral damage.

“Until this time there hasn’t been a really comprehensive way of defining zinc finger nuclease specificity,” said Carlos Barbas, a chemical biologist at the Scripps Research Institute in La Jolla, Calif., who was not involved in the study. “As we begin to treat patients with zinc finger nucleases and modify genomes, we need to know where those modifications are being made.”

Zinc fingers, so named ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies