XX mouse cell instability explained

Study suggests XX murine stem cells are under-methylated, shedding light on X chromosome activation

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Possessing two X chromosomes can significantly reduce DNA methylation in mouse embryonic stem cells, potentially explaining why such cell lines have proven unstable in culture, scientists report online in Nature Genetics. These findings could also shed light on what genes are involved in X chromosome inactivation and why such inactivation happens, co-author Neil Brockdorff at Hammersmith Hospital in London, UK told The Scientist.

These findings suggest an embryo's sex could have subtle but significant consequences on "diseases where epigenetics plays a difference," Brockdorff said. Uncovering the human homologs of the mouse genes responsible for this reduced methylation could illuminate differences between the species in X inactivation, he added.

In mammals, methylation typically occurs on cytosine residues of CpG dinucleotides. In mice, phosphorimager analysis showed roughly 70 percent of CpG dinucleotides were methylated in two different XY embryonic stem cell lines and in XY and XX somatic cells. However, in two ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Charles Choi

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours