Yokogawa Develops Single Cellome System SS2000 for Subcellular Sampling

A single-cell analysis solution that revolutionizes efficiency in drug discovery research by automating the collection of specific cells and intracellular components

Written byYokogawa
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Yokogawa announces that it has developed the Single Cellome™ System SS2000, a single-cell analysis solution that utilizes high-resolution images captured with a confocal microscope to automatically and accurately collect samples of specific cells and intracellular components. The SS2000 will be released in Japan, the US, and China in February 2022, with release in other markets such as Europe to follow at a later date.

Development Background

As the smallest unit of all living organisms, cells can greatly differ from one another; hence, there is a growing focus on single-cell analysis involving the isolation and handling of individual cells, as opposed to studying a population. In recent years, with improved analytical technology, it has become possible to analyze not only single cells but also specific molecules within them. Understanding the characteristics and functions of cells and mechanisms for cell development is a very effective means for clarifying the causes of diseases, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH