3D InSight™ Human Pancreatic Microislets

Long-lived, standardized pancreatic islet microtissues for diabetes & metabolic research.

Written byInSphero
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

Recently published 3D human and rat “pseudo-islets” display long-lived, robust metabolic activity, offer convenient solution for islet transplantation, anti-diabetic drug development, and assessment of acute and chronic toxicity of the endocrine pancreas.

InSphero AG today announced the launch of 3D InSight™ Human and Rat Pancreatic Microislets , further expanding the company’s catalog of organotypic 3D models produced using their patented hanging-drop production technology. The product launch follows InSphero‘s April publication of the microislets in the Journal of Tissue Engineering and Regenerative Medicine , characterizing their physiological properties and potential for use in islet transplantation, as well as a convenient in vitro model system for drug development and toxicity studies.

Primary human and rat pancreatic islets are widely used as in vitro models for diabetes and metabolic disorders, but current harvesting and isolation methods result in tissue impurities, size heterogeneity, and damage to cells that negatively impact the robustness of data ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH