A pathway leading to activation of BRCA1

Fanconi anaemia is a rare inherited disorder that causes children to develop bone marrow failure. Although a bone marrow transplant can cure the anaemia, many patients go on to develop a variety of cancers.The disorder is brought about by a mutation in any one of seven genes — five of which have been cloned. The proteins produced by these five genes form an enzyme that activates the sixth gene. Research teams led by Alan D'Andrea, of the Dana-Farber Cancer Institute in Boston, and Markus G

| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

Fanconi anaemia is a rare inherited disorder that causes children to develop bone marrow failure. Although a bone marrow transplant can cure the anaemia, many patients go on to develop a variety of cancers.

The disorder is brought about by a mutation in any one of seven genes — five of which have been cloned. The proteins produced by these five genes form an enzyme that activates the sixth gene. Research teams led by Alan D'Andrea, of the Dana-Farber Cancer Institute in Boston, and Markus Grompe, of the Oregon Health Sciences University in Portland, report in the 16 February Molecular Cell that they have cloned and identified that sixth gene, called FANCD2 (Mol Cell 2001, 7: 241-248). In a second the group also reports that FANCD2 produces a protein that switches on BRCA1 (Mol Cell 2001, 7: 249-262).

Approximately 50% of women with a strong family history of breast cancer ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

  • Kenneth Lee

    This person does not yet have a bio.
Share
3D illustration of a gold lipid nanoparticle with pink nucleic acid inside of it. Purple and teal spikes stick out from the lipid bilayer representing polyethylene glycol.
February 2025, Issue 1

A Nanoparticle Delivery System for Gene Therapy

A reimagined lipid vehicle for nucleic acids could overcome the limitations of current vectors.

View this Issue
Considerations for Cell-Based Assays in Immuno-Oncology Research

Considerations for Cell-Based Assays in Immuno-Oncology Research

Lonza
An illustration of animal and tree silhouettes.

From Water Bears to Grizzly Bears: Unusual Animal Models

Taconic Biosciences
Sex Differences in Neurological Research

Sex Differences in Neurological Research

bit.bio logo
New Frontiers in Vaccine Development

New Frontiers in Vaccine Development

Sino

Products

Tecan Logo

Tecan introduces Veya: bringing digital, scalable automation to labs worldwide

Inventia Life Science

Inventia Life Science Launches RASTRUM™ Allegro to Revolutionize High-Throughput 3D Cell Culture for Drug Discovery and Disease Research

An illustration of differently shaped viruses.

Detecting Novel Viruses Using a Comprehensive Enrichment Panel

Twist Bio 
Zymo Research

Zymo Research Launches Microbiome Grant to Support Innovation in Microbial Sciences