A Race Against Extinction

Bat populations ravaged; hundreds of amphibian species driven to extinction; diverse groups of birds threatened. Taking risks will be necessary to control deadly wildlife pathogens.

| 13 min read

Register for free to listen to this article
Listen with Speechify
0:00
13:00
Share

ANIMAL PHOTOS © ISTOCKPHOTO.COM: MALLARD—PAUL TESSIER­; NEWT, HERON, DART FROG—GLOBALIP; LIZARDS—KIMWHIT92; FROG—ANTAGAIN; SPOONBILL—KEN CANNING. CAECILIAN—© KAMNUAN/SHUTTERSTOCKFew experiences have hit me harder than walking through a bat graveyard. In March 2014, my colleagues and I were doing research in a pair of underground mines in northern Illinois. Five months earlier, these mines had been home to more than 28,000 bats of five species, but on that day they were tombs, littered with lifeless, fungus-covered bodies. The bats’ skin was dry and flaking; their bodies, which hung from the walls near the entrances, were so emaciated that their bones nearly protruded through their skin.

When we surveyed the area, we found just 1,023 live bats in one mine and 5,237 in the other. More than 75 percent of the bats were dead from white-nose syndrome, an emerging disease caused by the fungal pathogen Pseudogymnoascus destructans. We left Illinois the next day emotionally spent. Our team, along with the broader community of biologists who study this disease, has been searching for ways to prevent this pattern of devastation from repeating itself. Sadly, white-nose syndrome continues to ravage bat populations as it spreads westward across the continent. (See map here.) Over the past seven years, the disease has killed millions of bats in 25 states and five Canadian provinces, making it one of the most devastating diseases to affect mammals in ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 
The Immunology of the Brain

The Immunology of the Brain

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit