A single gene drives endocrine pancreatic development

pancreatic islet cells.

Written byKenneth Lee
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

By targeting a variety of pancreatic transcription factors to a region of the chick endoderm that is not normally fated for pancreas development, a team from the Department of Molecular and Cellular Biology at Harvard University, led by Doug Melton, has made some surprising discoveries.

The gene Pdx-1 is thought to be the pancreatic master switch because it is one of the first genes to be expressed during pancreatic development. Reporting in the 15 February Genes & Development, Grapin-Botton et al. found that, although Pdx-1 could initiate pancreas development, on its own the gene was not sufficient to complete the programme of pancreatic development (Genes Dev 2001, 15: 444-454). For example, hormone production was never detected.

The authors found that another transcription factor, encoded by ngn3, was sufficient to cause differentiation of pancreatic islet cells that secreted the endocrine hormones glucagon and somatostatin.

One of the approaches currently being explored ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo