A Synthetic Ion Channel Makes Plants Grow Faster

Arabidopsis with guard cells modified by a light-activated potassium ion channel can open and close stomata more quickly, conserving water.

Written byChia-Yi Hou
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: © ISTOCK.COM, NNEHRING

The paper
M. Papanatsiou et al., “Optogenetic manipulation of stomatal kinetics improves carbon assimilation, water use, and growth,” Science, 363:1456–59, 2019.

In plants, guard cells control the stomatal opening by expanding and contracting through ion flux. When a plant senses light, a signal is sent to the guard cell to increase its ion content, which causes the cell to take in water and swell in size. In this state, the stoma is open so that it can start taking in carbon dioxide for photosynthesis. When there’s no light available for photosynthesis, the plant closes its stomata so it doesn’t lose water through evaporation. Biologists suspected that the speed at which the guard cells react to changing conditions affects plants’ productivity and water use efficiency.

To test this idea, a team of researchers borrowed a tool from neurobiology: optogenetics, which enables scientists to use light to control membrane ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

September 2019

Our Inner Neanderthal

Ancient secrets in the human genome

Share
July Digest 2025
July 2025, Issue 1

What Causes an Earworm?

Memory-enhancing neural networks may also drive involuntary musical loops in the brain.

View this Issue
Explore synthetic DNA’s many applications in cancer research

Weaving the Fabric of Cancer Research with Synthetic DNA

Twist Bio 
Illustrated plasmids in bright fluorescent colors

Enhancing Elution of Plasmid DNA

cytiva logo
An illustration of green lentiviral particles.

Maximizing Lentivirus Recovery

cytiva logo
Explore new strategies for improving plasmid DNA manufacturing workflows.

Overcoming Obstacles in Plasmid DNA Manufacturing

cytiva logo

Products

sartorius-logo

Introducing the iQue 5 HTS Platform: Empowering Scientists  with Unbeatable Speed and Flexibility for High Throughput Screening by Cytometry

parse_logo

Vanderbilt Selects Parse Biosciences GigaLab to Generate Atlas of Early Neutralizing Antibodies to Measles, Mumps, and Rubella

shiftbioscience

Shift Bioscience proposes improved ranking system for virtual cell models to accelerate gene target discovery

brandtechscientific-logo

BRANDTECH Scientific Launches New Website for VACUU·LAN® Lab Vacuum Systems