Adapting to Elevated CO2

High carbon dioxide levels can irreversibly rev up a cyanobacterium’s ability to fix nitrogen over the long term, a study finds.

Written byRina Shaikh-Lesko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Massive bloom or surface aggregation of Trichodesmium near New Caledonia in the tropical Pacific Ocean, as viewed by a satellite from space (long brownish streaks are the bloom; white objects are clouds)NASAA key phytoplankton can adapt metabolically to long-term high carbon dioxide (CO2) levels, and those adaptive changes can become permanent, according to a study published today (September 1) in Nature Communications. Researchers at the University of Southern California (USC) and the Woods Hole Oceanographic Institute in Massachusetts grew Trichodesmium erythraeum, a cyanobacterium common in oceans, in carbon dioxide levels that mimicked the projected atmospheric levels in 2100—approximately double the current levels—for four-and-a-half years. The cyanobacteria responded with increased growth and higher nitrogen fixation rates. When returned to lower CO2 levels, the T. erythraeum did not decrease their growth or nitrogen fixation rates.

“They couldn’t come back to the lower current rate. They were stuck in the fast lane,” said study coauthor David Hutchins of USC. “It’s very surprising, but it’s also a little ominous that a key microbe in the ocean’s nutrient cycle could be irreversibly changed by the acidification of the ocean.”

T. erythraeum is widely distributed in the world’s oceans and is important to the marine food web because it fixes nitrogen, making the element available to other organisms in the ocean. Previous studies had demonstrated that phytoplankton respond to high CO2 levels with high growth and nitrogen fixation, but those studies were relatively short-term, lasting a few weeks.

Hutchins and his colleagues used experimental evolution to study the cyanobacterium under a variety of environmental ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH