Adapting to Elevated CO2

High carbon dioxide levels can irreversibly rev up a cyanobacterium’s ability to fix nitrogen over the long term, a study finds.

Written byRina Shaikh-Lesko
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

Massive bloom or surface aggregation of Trichodesmium near New Caledonia in the tropical Pacific Ocean, as viewed by a satellite from space (long brownish streaks are the bloom; white objects are clouds)NASAA key phytoplankton can adapt metabolically to long-term high carbon dioxide (CO2) levels, and those adaptive changes can become permanent, according to a study published today (September 1) in Nature Communications. Researchers at the University of Southern California (USC) and the Woods Hole Oceanographic Institute in Massachusetts grew Trichodesmium erythraeum, a cyanobacterium common in oceans, in carbon dioxide levels that mimicked the projected atmospheric levels in 2100—approximately double the current levels—for four-and-a-half years. The cyanobacteria responded with increased growth and higher nitrogen fixation rates. When returned to lower CO2 levels, the T. erythraeum did not decrease their growth or nitrogen fixation rates.

“They couldn’t come back to the lower current rate. They were stuck in the fast lane,” said study coauthor David Hutchins of USC. “It’s very surprising, but it’s also a little ominous that a key microbe in the ocean’s nutrient cycle could be irreversibly changed by the acidification of the ocean.”

T. erythraeum is widely distributed in the world’s oceans and is important to the marine food web because it fixes nitrogen, making the element available to other organisms in the ocean. Previous studies had demonstrated that phytoplankton respond to high CO2 levels with high growth and nitrogen fixation, but those studies were relatively short-term, lasting a few weeks.

Hutchins and his colleagues used experimental evolution to study the cyanobacterium under a variety of environmental ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies