AI Controls Laser-Guided Robot Worms

Automated control of light-responsive nematode worms marks the first foray into the development of multicellular, biorobotic organisms.

Written byRuth Williams
| 3 min read
An illustration of a microscope objecting beaming blue light onto a nematode worm with the labels objective, agar substrate, micro laser beams, paralyzed c. elegans, and controlled c. elegans movement

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ABOVE: Set up of the laser-guided RoboWorm system
REPRINTED WITH PERMISSION FROM X. DONG ET AL., SCIENCE ROBOTICS, 6:EABE3950, 2021

Roboticists have for the first time built an automated computational system for controlling the movements of a living multicellular organism—a genetically engineered worm (Caenorhabditis elegans) whose muscles contract in response to blue light. The laser-guided nematode, described last week (June 30) in Science Robotics, is called RoboWorm.

“Most of the biohybrid microrobots [in development] are mainly based on bacteria,” says Li Zhang, a nanomaterials and microrobotics researcher at the Chinese University of Hong Kong who was not involved in the research. But in this study, “they propose the use of C. elegans, a worm, as a robotic agent . . . [in a] very interesting and smart way.”

The natural world is an endless source of inspiration for human feats of engineering, and nowhere is that more apparent than in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • ruth williams

    Ruth is a freelance journalist. Before freelancing, Ruth was a news editor for the Journal of Cell Biology in New York and an assistant editor for Nature Reviews Neuroscience in London. Prior to that, she was a bona fide pipette-wielding, test tube–shaking, lab coat–shirking research scientist. She has a PhD in genetics from King’s College London, and was a postdoc in stem cell biology at Imperial College London. Today she lives and writes in Connecticut.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies