An emerging pattern

Three studies shed new light on how members of the bone morphogenetic protein family are regulated during embryonic development.

Written byKenneth Lee
| 1 min read

Register for free to listen to this article
Listen with Speechify
0:00
1:00
Share

During development, organizing centres at key locations in the embryo secrete morphogens that become distributed in a concentration gradient. It is thought that cells along the gradient adopt different fates depending on the concentration of the morphogen they encounter. In the 22 March Nature, three studies shed light on the elaborate regulation of some potent morphogens — members of the bone morphogenetic protein (BMP) family.

All three studies focus on the role of the Twisted gastrulation (Tsg) protein and find that, in both vertebrates and invertebrates, this protein binds to members of the BMP family, preventing them from signalling. The authors — Jeffrey Ross of the University of Minnesota and co-workers, Ian Scott of the University of Wisconsin Medical School and co-workers, and Chenbei Chang of Rockefeller University and colleagues — studied Tsg function in Drosophila (Nature 2001, 410:479-483), Xenopus (Nature 2001, 410:475-478) and the zebrafish (Nature 2001, 410:483-487), respectively.

...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

nuclera logo

Nuclera eProtein Discovery System installed at leading Universities in Taiwan

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo