Antibiotics From Scratch

Scientists develop a method for synthesizing hundreds of new macrolide antibiotics.

| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ErythromycinWIKIMEDIA, GIORGIOP2Researchers have devised an approach for synthesizing new macrolide antibiotics from simple chemical building blocks. Using this method, Andrew Myers of Harvard University and colleagues synthesized more than 300 new antibiotic candidates, several of which were effective against some of the most stubbornly drug-resistant bacterial strains, according to the study published today (May 18) in Nature.

“It’s a tour de force in synthetic chemistry,” Kim Lewis of Northeastern University in Boston, who was not involved in the study, told The Scientist. “This is the first time there is a relatively easy path to synthesize macrolide erythromycin-type antibiotics from scratch.”

For most of the field’s history, natural products have been the starting point for new antibiotics. Most of them have been made by chemically modifying natural products in a process known as semisynthesis. Every existing antibiotic in a class called macrolides—including the commonly prescribed drug azithromycin—has been made by modifying erythromycin, which was first discovered in a soil sample in 1949. But some bacteria are developing resistance to these drugs at a startling rate, and semisynthesis is limited by the difficulty of ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • Tanya Lewis

    This person does not yet have a bio.
Share
May digest 2025 cover
May 2025, Issue 1

Study Confirms Safety of Genetically Modified T Cells

A long-term study of nearly 800 patients demonstrated a strong safety profile for T cells engineered with viral vectors.

View this Issue
iStock

TaqMan Probe & Assays: Unveil What's Possible Together

Thermo Fisher Logo
Meet Aunty and Tackle Protein Stability Questions in Research and Development

Meet Aunty and Tackle Protein Stability Questions in Research and Development

Unchained Labs
Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Detecting Residual Cell Line-Derived DNA with Droplet Digital PCR

Bio-Rad
How technology makes PCR instruments easier to use.

Making Real-Time PCR More Straightforward

Thermo Fisher Logo

Products

fujirebio-square-logo

Fujirebio Receives Marketing Clearance for Lumipulse® G pTau 217/ β-Amyloid 1-42 Plasma Ratio In-Vitro Diagnostic Test

The Scientist Placeholder Image

Biotium Launches New Phalloidin Conjugates with Extended F-actin Staining Stability for Greater Imaging Flexibility

Leica Microsystems Logo

Latest AI software simplifies image analysis and speeds up insights for scientists

BioSkryb Genomics Logo

BioSkryb Genomics and Tecan introduce a single-cell multiomics workflow for sequencing-ready libraries in under ten hours