Antibody Combo Expands Response to Checkpoint Inhibitor in Mice

Genetic analyses uncover cellular hallmarks of bladder cancer tumors that don’t respond, but interfering with one of those characteristics in a mouse model causes tumors to shrink.

Written byKerry Grens
| 2 min read

Register for free to listen to this article
Listen with Speechify
0:00
2:00
Share

WIKIMEDIA, NATIONAL HUMAN GENOME RESEARCH INSTITUTE Checkpoint inhibitor drugs, those that pull the brakes off the immune system, can cause dramatic improvements in cancer patients, but the benefits are far from universal. In the case of atezolizumab (Tecentriq), for instance, just about a quarter of patients respond to the medication.

To find ways to boost the proportion of patients who respond to checkpoint inhibitors, researchers have turned to combination therapies. At the American Association for Cancer Research meeting in Chicago today (April 16), researchers from Genentech presented data showing atezolizumab combined with an antibody that interferes with transforming growth factor B (TGF-β) shrinks bladder cancer in mice that model recalcitrant tumors. The team had also published its results in February in Nature.

Atezolizumab was given accelerated approval by the US Food and Drug Administration in 2016 to treat bladder cancer. The drug is a monoclonal antibody that works by binding to, and thereby inhibiting, programmed death-ligand 1 (PD-L1), a protein that ordinarily tamps down immune responses. To strategize ways of increasing the proportion of patients ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies