Ants on Burglar Watch

An ant species that lives on a carnivorous pitcher plant keeps nutrient thieves from escaping by eating them.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

The pitcher plant Nepenthes bicalcarata.FLICKR, AJ CANN

The swimming ant, Camponotus schmitzi, which lives exclusively on the fanged pitcher plant, Nepenthes bicalcarata, in Borneo, provides the plant with extra nutrients, at least in part by capturing and consuming parasitic mosquito and fly larvae that leach nutrients from the pitcher while developing inside it. Scientists once thought that the ant—which traverses the slippery rim of the fluid-filled pitchers while other insects fall in, drown, and are digested—was a parasite. But researchers over the last several years have suggested the ant could be doing the plant many small favors. A paper published today (May 22) in the journal PLOS One confirms that the ants and their plant homes are indeed engaged in a mutually beneficial relationship.

To confirm that the plants benefited from the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH