Augmenting the Genetic Alphabet

For the first time, synthetic DNA base pairs are replicated within living bacteria.

Written byKate Yandell
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

SYNTHORXLiving organisms have two sets of DNA base pairs—adenine paired with thymine and cytosine paired with guanine—that together encode the 20 amino acids used to make proteins in the cell. Now, scientists at The Scripps Research Institute (TSRI) in La Jolla, California, have introduced a synthetic base pair to Escherichia coli, greatly expanding the information DNA is able encode. DNA containing the novel base pair can replicate within the bacteria, according to a paper published today (May 7) in Nature. The work advances the goal of creating cells with synthetic DNA elements that can produce proteins made with an expanded set of amino acids.

“This is the first paper to show the possibility that living organisms can have really artificial DNA with [an] expanded genetic alphabet,” Ichiro Hirao, a synthetic biologist at the RIKEN Center for Life Science Technologies in Japan, wrote in an e-mail to The Scientist. Hirao was not involved in the study, but is also working to incorporate synthetic base pairs into living organisms.

“What we’ve done is successfully finally gotten a cell that stably harbors increased genetic information,” said study coauthor Floyd Romesberg, a synthetic biologist at TSRI. “What we want to do next, and what my lab is already working on, is . . . to retrieve that information.”

With the help of more than a dozen graduate students and postdocs, Romesberg spent the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH