Autophagy’s Role in Alzheimer’s

Researchers show that amyloid beta is secreted from neurons in an autophagy-dependent manner.

Written byAbby Olena, PhD
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

RIKEN BRAIN SCIENCE INSTITUTE, PER NILSSONPathological hallmarks of Alzheimer’s disease (AD) include the aggregation of amyloid beta (Aβ) peptides inside neurons and the accumulation of extracellular Aβ plaques. Previously, the mechanisms by which Aβ leaves neurons were unknown, and it has been controversial whether the intracellular or extracellular accumulation of Aβ plays a larger role in AD-associated symptoms. A paper published today (October 3) in Cell Reports shows that Aβ leaves neurons in an autophagy-dependent manner, and suggests that aggregation of intracellular Aβ contributes to AD pathology.

Per Nilsson, a research scientist at the RIKEN Brain Science Institute in Japan, along with his colleagues crossed mice deficient in autophagy in forebrain neurons with transgenic animals that produce abnormally high levels of the Aβ precursor protein. They found that the offspring had far fewer extracellular Aβ plaques than the transgenic mice that showed normal autophagy.

“We know that autophagy is the cleaning system within the cell,” said Nilsson. “Our expectation was that if we delete autophagy, we would get more of the Aβ plaques outside the cell. But we saw the contrary, so we were really surprised by that, and we had to work hard to understand why,” he continued. In order to understand the reason that autophagy-deficient mice had fewer Aβ plaques, ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to more than 35 years of archives, as well as TS Digest, digital editions of The Scientist, feature stories, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • abby olena

    As a freelancer for The Scientist, Abby reports on new developments in life science for the website. She has a PhD from Vanderbilt University and got her start in science journalism as the Chicago Tribune’s AAAS Mass Media Fellow in 2013. Following a stint as an intern for The Scientist, Abby was a postdoc in science communication at Duke University, where she developed and taught courses to help scientists share their research. In addition to her work as a science journalist, she leads science writing and communication workshops and co-produces a conversational podcast. She is based in Alabama.  

    View Full Profile
Share
February 2026

A Stubborn Gene, a Failed Experiment, and a New Path

When experiments refuse to cooperate, you try again and again. For Rafael Najmanovich, the setbacks ultimately pushed him in a new direction.

View this Issue
Human-Relevant In Vitro Models Enable Predictive Drug Discovery

Advancing Drug Discovery with Complex Human In Vitro Models

Stemcell Technologies
Redefining Immunology Through Advanced Technologies

Redefining Immunology Through Advanced Technologies

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Ensuring Regulatory Compliance in AAV Manufacturing with Analytical Ultracentrifugation

Beckman Coulter Logo
Conceptual multicolored vector image of cancer research, depicting various biomedical approaches to cancer therapy

Maximizing Cancer Research Model Systems

bioxcell

Products

Sino Biological Logo

Sino Biological Pioneers Life Sciences Innovation with High-Quality Bioreagents on Inside Business Today with Bill and Guiliana Rancic

Sino Biological Logo

Sino Biological Expands Research Reagent Portfolio to Support Global Nipah Virus Vaccine and Diagnostic Development

Beckman Coulter

Beckman Coulter Life Sciences Partners with Automata to Accelerate AI-Ready Laboratory Automation

Refeyn logo

Refeyn named in the Sunday Times 100 Tech list of the UK’s fastest-growing technology companies