Bacterial Persisters

A bacterial gene shuts down the cell's own protein synthesis, which sends the bacterium into dormancy and allows it to outlast antibiotics.

kerry grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PERSISTER PATHWAY: Phosphorylation of GltX by the bacterial toxin HipA (1) blocks GltX from adding an amino acid to transfer RNA (tRNA) (2). Uncharged tRNAs clog up the protein synthesis machinery (3), which leads to the production of the alarmone guanosine pentaphosphate [(p)ppGpp], synthesized by RelA, (4) and the subsequent shut down of cellular activities.

The paper
E. Germain et al., “The molecular mechanism of bacterial persistence by HipA,” Molecular Cell, 52:248-54, 2013.

In any given colony of, say, one million bacterial cells, there are bound to be one or two individuals that will survive an onslaught of antibiotics. The phenomenon, first identified in the 1940s, is called bacterial persistence or multidrug tolerance. Unlike antibiotic resistance, which results from a genetic alteration that renders a bacterium invulnerable to particular drugs, persistence derives from a sort of cellular sleep. Normal cellular functions shut down, giving antibiotics—which typically target active processes, such as translation or transcription—nothing to attack.

Bacteria capable of persistence have dueling protein pairs—a toxin and an antitoxin. The toxin forces the cell into a dormant state, and the antitoxin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Keywords

Meet the Author

  • kerry grens

    Kerry Grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

Published In

Share
A greyscale image of cells dividing.
March 2025, Issue 1

How Do Embryos Know How Fast to Develop

In mammals, intracellular clocks begin to tick within days of fertilization.

View this Issue
iStock: Ifongdesign

The Advent of Automated and AI-Driven Benchwork

sampled
Discover the history, mechanics, and potential of PCR.

Become a PCR Pro

Integra Logo
3D rendered cross section of influenza viruses, showing surface proteins on the outside and single stranded RNA inside the virus

Genetic Insights Break Infectious Pathogen Barriers

Thermo Fisher Logo
A photo of sample storage boxes in an ultra-low temperature freezer.

Navigating Cold Storage Solutions

PHCbi logo 

Products

Sapio Sciences

Sapio Sciences Makes AI-Native Drug Discovery Seamless with NVIDIA BioNeMo

DeNovix Logo

New DeNovix Helium Nano Volume Spectrophotometer

Olink Logo

Olink® Reveal: Accessible NGS-based proteomics for every lab

Olink logo
Zymo Logo

Zymo Research Launches the Quick-16S™ Full-Length Library Prep Kit