Bacterial Persisters

A bacterial gene shuts down the cell's own protein synthesis, which sends the bacterium into dormancy and allows it to outlast antibiotics.

Written byKerry Grens
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

PERSISTER PATHWAY: Phosphorylation of GltX by the bacterial toxin HipA (1) blocks GltX from adding an amino acid to transfer RNA (tRNA) (2). Uncharged tRNAs clog up the protein synthesis machinery (3), which leads to the production of the alarmone guanosine pentaphosphate [(p)ppGpp], synthesized by RelA, (4) and the subsequent shut down of cellular activities.

The paper
E. Germain et al., “The molecular mechanism of bacterial persistence by HipA,” Molecular Cell, 52:248-54, 2013.

In any given colony of, say, one million bacterial cells, there are bound to be one or two individuals that will survive an onslaught of antibiotics. The phenomenon, first identified in the 1940s, is called bacterial persistence or multidrug tolerance. Unlike antibiotic resistance, which results from a genetic alteration that renders a bacterium invulnerable to particular drugs, persistence derives from a sort of cellular sleep. Normal cellular functions shut down, giving antibiotics—which typically target active processes, such as translation or transcription—nothing to attack.

Bacteria capable of persistence have dueling protein pairs—a toxin and an antitoxin. The toxin forces the cell into a dormant state, and the antitoxin ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

  • kerry grens

    Kerry served as The Scientist’s news director until 2021. Before joining The Scientist in 2013, she was a stringer for Reuters Health, the senior health and science reporter at WHYY in Philadelphia, and the health and science reporter at New Hampshire Public Radio. Kerry got her start in journalism as a AAAS Mass Media fellow at KUNC in Colorado. She has a master’s in biological sciences from Stanford University and a biology degree from Loyola University Chicago.

    View Full Profile

Published In

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH