Bacteriophages to the Rescue

Phage therapy is but one example of using biological entities to reduce our reliance on antibiotics and other failing chemical solutions.

Written byEmily Monosson
| 3 min read

Register for free to listen to this article
Listen with Speechify
0:00
3:00
Share

ISLAND PRESS, JUNE 2017This year I gave a presentation to public-health students at a university about options for controlling pests and pathogens that didn’t depend on industrial-age chemicals such as antibiotics and pesticides. When I asked if they’d ever heard of phage therapy—the use of bacteria-attacking viruses to fight infection—I was met with blank stares. When I finished sharing stories of desperate patients miraculously cured of antibiotic-resistant infections within days, I sensed a bit of skepticism, as if the crowd’s politeness was keeping them from asking: “If it’s so effective, how come we’ve never heard of this?” In this age of alternate truths and quack cures, it’s an appropriate question.

But phage therapy is nothing new, nor is it some fringe remedy. It was first used to cure Shigella infections early in the 20th century, to miraculous effect (although at the time, scientists were unaware of the nature of viruses). Once treated with phages isolated from fecal samples of spontaneously recovering dysentery sufferers, patients’ Shigella-induced fevers and bloody stools subsided within 24 hours. (See “Viral Soldiers,” The Scientist, January 2016.) Within a decade, pharmaceutical companies on both sides of the Atlantic began developing various phage therapies. But then came antibiotics. And poor production practices by some pharmaceutical companies (some commercial products in the U.S. were found to be lacking in potency, for example) led to a couple of damning reviews of phage therapy in the ...

Interested in reading more?

Become a Member of

The Scientist Logo
Receive full access to digital editions of The Scientist, as well as TS Digest, feature stories, more than 35 years of archives, and much more!
Already a member? Login Here

Related Topics

Meet the Author

Published In

July/August 2017

DNA Erector Sets

New blueprints for the double helix

Share
Illustration of a developing fetus surrounded by a clear fluid with a subtle yellow tinge, representing amniotic fluid.
January 2026, Issue 1

What Is the Amniotic Fluid Composed of?

The liquid world of fetal development provides a rich source of nutrition and protection tailored to meet the needs of the growing fetus.

View this Issue
Skip the Wait for Protein Stability Data with Aunty

Skip the Wait for Protein Stability Data with Aunty

Unchained Labs
Graphic of three DNA helices in various colors

An Automated DNA-to-Data Framework for Production-Scale Sequencing

illumina
Exploring Cellular Organization with Spatial Proteomics

Exploring Cellular Organization with Spatial Proteomics

Abstract illustration of spheres with multiple layers, representing endoderm, ectoderm, and mesoderm derived organoids

Organoid Origins and How to Grow Them

Thermo Fisher Logo

Products

Brandtech Logo

BRANDTECH Scientific Introduces the Transferpette® pro Micropipette: A New Twist on Comfort and Control

Biotium Logo

Biotium Launches GlycoLiner™ Cell Surface Glycoprotein Labeling Kits for Rapid and Selective Cell Surface Imaging

Colorful abstract spiral dot pattern on a black background

Thermo Scientific X and S Series General Purpose Centrifuges

Thermo Fisher Logo
Abstract background with red and blue laser lights

VANTAstar Flexible microplate reader with simplified workflows

BMG LABTECH